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Abstract

The thermal decomposition of iron sulphate hexahydrate was studied by thermogravimetry at
a heating rate of 5°C min™' in static air. The kinetic parameters were evaluated using the integral
method by applying the Coats and Redfern approximation. The thermal stabilities of the hydrates
were found to vary in the order.
Fe (S0,),6H,0 = Fe,(50,),4.5H,0 — Fe (S0,),0.5H,0

The dehydration process of hydrated iron sulphate was found to conform to random nuclea-
tion mass loss kinetics, and the activation energies of the respective hydrates were 89.82, 105.04
and 172.62 kJ mol™', respectively. The decomposition process of anhydrous iron sulphate occurs
in the temperature region between 810 and 960 K with activation energies 526.52 kJ mol™! for the
D3 model or 256.05 kJ mol™' for the R3 model.
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Introduction

The important applications of iron(IIl) sulphate hydrates and Fe,O, are well
known. The kinetics of the decomposition of sulphate hydrates has been studied ow-
ing to their technical importance and theoretical interest. Several studies of the
thermal behaviour of these compounds have been carried out [1] but they did not
describe the compositions of decomposition intermediates and the kinetic equa-
tions. The application of TG, DTG and DTA in a static atmosphere to study these
decompositions has also been described [2-4], but the activation energy and preex-
ponential factor data determined are different.

The aim of the present work was to obtain more detailed information on the de-
composition of iron sulphate hexahydrate and the possible existence of intermedi-
ates and to calculate the kinetic parameters of all stages of decomposition.

Experimental

The TG, DTG and DTA curves were obtained using a derivatograph, type 1500
(MOM, Hungary) in static air in the temperature range 25-1000°C at a heating rate
of 5°C min™. Sample mass was 700 mg.

0368-4466/97/ $ 5.00 John Wiley & Sons Limited
© 1997 Akadémiai Kiads, Budapest Chichester



1416 STRASZKO et al.: HYDRATED IRON SULPHATE

The Fey(S04)3-6H,0 (chemically pure) used in this study was supplied by PPH
Polskie Odczynniki Chemiczne Gliwice, Poland. '
The reproducibility was good.

Results and discussion

The thermoanalytical curves (TG, DTG, DTA) of Fey(S0,);-6H,0 are shown in
Fig. 1 and the analysis data are summarized in Table 1. The TG curve shows a con-
tinuous mass loss around 330-500 K indicating that the sulphate hydrates formed at
this temperature are unstable in the study conditions. The DTG and DTA curves ex-
hibit three endothermic steps of dehydration. The first, between 330-430 K is gen-
erally interpreted as being caused by the loss of 1.5 mol of water (mass loss of
5.61%, theoretically 5.31%). In the second stage 4 moles of crystal water are lost
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Fig. 1 Thermoanalytical curves of thermal decomposition of Fe,(S0,),:6H,0 in air

Table 1 Thermal analysis data of Fe,(SO,),-6H,0

Mass loss/ %
Stage Trnge/K Torg pea found theoret,
1 330430 415 5.63 5.31
2 430-500 478 13.60 14.18
3 500-542 537 1.76 1.77
4 810-960 947 46.36 47.29
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between 430-500 K and in the third step the last 0.5 mole of water is removed. The
three steps are associated with a total mass loss of 21%. The weight is stabilized at
about 500 K where anhydrous Fe,(SOy); is formed. Finally, between 810 and 960 K

a separate step connected with the formation of Fe,0; was detected, with a mass
loss of 46.36%.

On the basis of our study the following reactions were assumed to occur in the
course of the thermal decomposition of Fe,(SO,);-6H,0:

Dehydration
Fe,(SO,);6H,0 — Fey(SO,)54.5H,0 + 1.5H,0
Fe,(S0,)134.5H,0 — Fey)(80,)5-0.5H,0 + 4H,0
Fe,(S0,);:0.5H,0 — Fey(SO,); + 0.5H,0
Decomposition of anhydrous iron sulphate

Fe,(SO,); — Fe,0; + 350,

From the mass losses observed in the TG-curves the a-T relations were estimated
for the individual steps. Kinetic analysis of experimental TG-curves recorded under
non-isothermal conditions was carried out by means of an integral method by applying
the Coats and Redfern equation because it has been found to yield the best results [5]:

@) _, AR[, _2RTY_E
In l:——]T}—ln BE |:1 E] RT (1)

where o represents the conversion degree, g(o) is the conversion function which
depends on the mechanism of reaction, T — is the absolute temperature, 4 — is the
pre-exponential Arrhenius factor, R — is the gas constant, B is the linear heating

Table 2 Kinetic model investigated

Symbol g(a) Macromechanism
D1 o one dimensional diffusion (power law)
D2 (1-a)In(1-0) + ¢ two dimensional diffusion; cylindrical symmetry
D3 3/.2[1«1-w"? three dimensional diffusion; spherical symmetry, Jander eq.

D4 3/2[1—2(1/3—(1-—(1)2/3]‘ three dimensional diffusion; spherical symmetry,
Ginstling Brounshtein eq.

Fl1 [-In(1-0)] random nucleation; only one nucleus on each particle
A2 [—ln(l—ot)]”2 random nucleation; Avrami I eq.

A3 [—ln(l—a)]”3 random nucleation; Avrami II eq.

R1 o phase boundary reaction (zero order); Polanyi-Wigner eq.
R2  2(1«1-0)' phase boundary reaction; cylindrical symmetry

R3  3[1<1-0" phase boundary reaction; spherical symmetry
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rate, E — is the apparent activation energy. The thermodynamic parameters were
calculated from the Eyring equation:

AH*

RT

k(T) = %Z exp(ég‘—) exp(—-

where kg - is the Boltzman constant, & — is the Planck constant, AS" - is the en-
tropy of activation, AH" — is the entalphy of activation.

Based on the o(7) dependences (Fig. 2), the g(a) function was chosen from
among the well-known models (Table 2), which best described the experimental re-
sults of the decomposition. Values of the apparent activation energy, preexponential
factor, linear regression coefficient r, entropy, enthalpy and free energy of activa-
tion obtained from an analysis of the dynamic TG curves on the basis of the Coats-

(2)
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Fig. 2 Variation of conversion degree with temperature for different stages of decomposition

of Fe,(80,);-6H,0
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Fig. 3 Dependences of ln(g(a)/Tz) on 1/T for the best models of decomposition of
Fe,(80,),-6H,0

Redfern equation, are listed in Table 3. The course of the function In(g(c)/T2) vs.
1/T for the best fitting models are shown in Fig. 3. From Table 3 it can be seen that
the best fitting expression for all dehydration stages is the model F1. The activation
energies increased from 89.82 for the first stage through 105.04 kJ mol™! for the
second stage to 172.62 kJ mol™! for the last dehydration step. The last water semi-
molecule was more strongly bound. The decomposition of anhydrous iron sulphate
is controlled by the three dimensional diffusion model D3 or the contracting volume
model R3. In this case it is impossible to choose one kinetic model from dynamic
measurements.

The dependences of reaction rates on temperature for particular stages of de-
composition which were calculated from the obtained kinetics equations are pre-
sented in Fig. 4. It seems that some stages of dissociation are partly overlapping.
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Fig. 4 Variation of reaction rates with temperature for different stages of decomposition of
Fe,(S0,);6H,0
Conclusions

The thermal decomposition of iron(III) sulphate hexahydrate occurs in four steps
under the conditions applied in this study. The elimination of water occurs in three
steps with the corresponding endothermic peaks at 415, 478, 537 K. All stages of
dehydration are governed by nucleation model F1. The activation energy of the de-
hydration processes increases with decreasing hydration number of the iron from
89.82 to 172.62 kJ mol™".

The decomposition of anhydrous iron sulphate occurs in the temperature range
between 810 and 960 K. The kinetics of this process is controlled by the three-di-
mensional diffusion model D3 or the contracting volume model R3. The activation
energies are 526.52 or 256.05 kJ mol™', respectively.
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